Correction to “Multiple melt injection along a spreading segment at Askja, Iceland”

Janet Key, Robert S. White, Heidi Soosalu, and Steinunn S. Jakobsdóttir

Received 16 March 2011; accepted 16 March 2011; published 19 May 2011.

[1] In the paper “Multiple melt injection along a spreading segment at Askja, Iceland” by Janet Key et al. (Geophysical Research Letters, 38, L05301, doi:10.1029/2010GL046264, 2011), we regret that an error was made in the calculation of the V_p/V_s ratios. The correct values are presented in this revised version of Figure 2 and its caption. This change does not affect either the hypocentral locations, for which we used the correct mean V_p/V_s value of 1.78, nor the overall conclusions of our paper. We still find evidence for relatively elevated V_p/V_s ratios from the lower crustal earthquakes, consistent with the presence of melt in the lower crust. However the following corrections to the text should be made in light of this discovery.

[2] The final sentence of paragraph 10 should be corrected to: The mean V_p/V_s ratio is 1.78 and a larger proportion of the earthquakes have a higher V_p/V_s than the peak of the histogram (Figure 2b).

[3] Paragraph 14 should read: Typical V_p/V_s ratios measured on seismic refraction profiles with turning points in the mid- to lower Icelandic crust are in the range 1.72–1.79 [Brandsdóttir and Menke, 2008, and references therein]. Upper crustal (0–6 km depth) V_p/V_s values in the area near Askja average 1.74 ± 0.03 also calculated from Wadati plots (M. Mitchell, personal communication, 2011). As the V_p/V_s ratio determined from a Wadati plot is averaged over the whole length of all source-receiver paths, the smaller V_p/V_s ratios from the upper crust will have contributed to values calculated from the lower crustal earthquakes. This has the effect of reducing the averaged V_p/V_s ratios determined from earthquakes in the lower crust, so the local V_p/V_s ratio in the lower crust will actually be higher than the average value reported here. For example, if the V_p/V_s value of 1.74 measured for the upper crust applies down to 12 km (the depth of the shallowest lower crustal seismicity), we can calculate the lower crustal V_p/V_s ratio required to produce an average of 1.78 from an earthquake in the middle of the lower crustal earthquakes at 20 km depth. This gives a local lower crustal V_p/V_s of 1.85. The tail of high V_p/V_s ratios of 1.8–1.92 from lower crustal earthquakes (Figure 2b), is consistent with the presence a few percent of distributed melt in the lower crust [Hammond and Humphreys, 2000].

Figure 2. (a) Example Wadati plot [Wadati, 1933] for a lower crustal earthquake; dots are arrival times from seismometers, black line is best fitting slope. (b) Histogram of V_p/V_s values for all earthquakes with more than 10 points on a Wadati plot. Mean is marked with black arrow, light grey shaded area is range of observed V_p/V_s values for normal Icelandic crust [Brandsdóttir and Menke, 2008, and references therein]. Mean V_p/V_s value of upper crust in same area is shown by broken arrow (M. Mitchell, personal communication, 2011).

References
Brandsdóttir, B., and W. Menke (2008), The seismic structure of Iceland, Jökull, 58, 17–34.