Tallinn University of Technology
Faculty of Power Engineering
Department of Electrical Drives and Power Electronics

Margus Müür

Programming of Robotized Flexible Manufacturing System

Project 1.0101-0278
Application of Interdisciplinary and International Team and Project Based Learning in Master Studies
Study material for student course of Industry Automation

Tallinn
2008
Contents

Introduction 3
1 Flexible Manufacturing System Multi FMS 4
 1.1 Devices of Flexible Manufacturing System Multi FMS 4
 1.2 Control equipment 10
2 Festo Mechatronics Assistant 12
 2.1 Start-up 12
 2.2 Festo-Browser 13
3 COSIMIR Educational 18
 3.1 Start-up 18
 3.2 3D-show window 21
 3.3 Robot model controlling in 3D-show window 22
 3.4 Programming 25
 3.5 MELFA Basic IV commands 27
 3.6 Sample of robot control program 35
 3.7 Robot position list 38
 3.8 Program simulation 39
 3.9 New element addition into the robot project 40
4 COSIMIR Professional 45
 4.1 Start-up 45
 4.2 Window RCI Explorer 47
 4.3 Data communication between the computer and the robot control device 47
 4.4 Robot control via computer 49
 4.5 Program loading into the robot control device and back to the computer 49
 4.6 Program testing on the real robot 52
 4.7 Start-up and stop the program in the robot control device 54
5 Practical exercises 56
 5.1 Exercise 1. Transport of details on the worktable 56
 5.2 Exercise 2. Sensor addition into a manufacturing process 57
 5.3 Exercise 3. Sensor use on the transport of details 58
 5.4 Exercise 4. Placing products into the box 61
6 References 62
Introduction

The aim of this project is to introduce students robot use in modern automation and manufacturing systems. It is required to teach them how to program a robot, develop existing manufacturing technologies and compile documentation.

After completing the exercises students will understand/be able to:

- use opportunities of a robotized cell and its role in the manufacturing system;
- technological process of the robotized manufacturing cell and are able to describe the process of product manufacturing;
- items of hardware modules and their functions in a technological process;
- functions of mechanical, pneumatical and electrical components and connection principles between these components;
- compile technical drawings of the mechanical part of a system and specifications of the components;
- compile the pneumatical schemes of a device and specifications of the components;
- compile electrical circuits and specifications of the components;
- assemble the manufacturing devices according to pneumatical and electrical schemes;
- compile different control algorithms optimize and document these algorithms;
- program robot CR1-571 control device and are able to write, smooth and simulate this program;
- load the program into a robot control device and start-up the program;
- importance of simulation for flexible automation of industry;
- use the COSIMIR Educational software and its functions;
- use the COSIMIR Professional software and its functions;
- follow and differentiate the function of a simulated and a real device;
- compile and review project reports;
- summarize practical tasks in the project and evaluate acquired knowledge.